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Basic Study Design

Cancer Control

Mass/Charge

In
te

ns
ity

7500 8000 8500 9000 9500 10000

0
5

10
15

COMPARE

CASES CONTROLS

Potential markers 



Biomarker Discovery

Cancer Control

CASES CONTROLS

A potential biomarker



Phases of Biomarker Discovery & Validation
 

Pre-clinical 
Exploratory PHASE 1 Promising directions identified 

Clinical 
Assay 
Validation 

PHASE 2 Clinical assay detects established 
disease 

Retrospective 
Longitudinal PHASE 3 Biomarker detects pre-clinical disease 

and a “screen positive” rule defined 

Prospective 
Screening PHASE 4 

Extent and characteristics of disease 
detected by the test and the false 
referral rate are identified 

Cancer 
Control PHASE 5 

Impact of screening on reducing 
burden of disease on population is 
quantified 

Pepe et al. JNCI 2001



100% sensitivity & specificity

in classifying cases vs. controls

≠
Identification of biomarkers for cases



Three Principles of Case-Control Design
(Wacholder et al.  Am J Epidemiol 1992)

1.  A common study base for cases and controls

2.  Controlling for confounding effects

3.  Comparable accuracy and precision in exposure 
measurements 



Define a common study base (who, where, 
when) and sample both cases and controls 
from it

× Cases and controls from different institutions
× Cases from a past study, controls from an 

ongoing study

Disease is not the only difference between 
cases and controls  

1.  Common Study Base



Balance age and race between cases and 
controls (or adjust for in the analysis)

× Study base = 30-75 women in Montreal in 2003
Breast cancer cases = Tend to be older
Controls = Younger 

Markers for age, not cancer, will distinguish 
cases and controls  

2.  Controlling for confounding



Unify the sample collection, processing, storage, 
and assay methods for cases and controls.

Balance the use of machines, technicians, chips, 
and wells between cases and controls.

If not,

True marker-disease relation is distorted

3.  Comparable measurement errors



Use of multiple markers

in classifying disease classes



Biomarker Discovery

Cancer Control
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A potential biomarker



Likely overlap of intensity
distributions of a single 
marker between cases 
and controls 

CancerControl

Marker A

Control

Cancer
Cancer

Control

M
ar

ke
r BNeed to combine 

information from
multiple markers!



• Classical Discriminant Analysis 
• Logistic Regression
• CART
• Neural Network
• Support Vector Machine
• Boosting

…

Building Classifiers



Cancer vs. control classification in a given dataset
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Normal

The design of the EVMS biomarker analysis
PCa-early PCa-late

N=96 N=99 N=98

BPH

N=93

Training Data

167 PCa (84 early + 83 late)
78 BPH

81 Normal

Test Data

30 PCa
15 BPH

15 Normal
(Blinded)
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Cross-validation of the training data

Use 90% to form the marker set & 10% to test
Repeat 10 times and summarize 

How to assess over-fitting in the training set ?

Build a classifier with 90% and test in 10%
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Logistic regression with forward variable selection
with various stopping p-values
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Use of the test set

Enable unbiased assessment of classification error 

if no modification/selection of the classifier-
construction method is made with the test set

e.g., Construct 2 classifiers with the training set and 
report the one with the better test-set performance

(2 feature selection methods, stepwise stopping, etc.)



Boosting for supervised and partially 

supervised learning

Method for classifier building and 

its modification for partially-incorrect class labels



M1-POSITIVE
CASES

M1

ALL CASES ALL CONTROLS

M2

Heterogeneity / subtypes within cancer

M2-POSITIVE
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Real AdaBoost Algorithm (y* = 1 vs. y* = −1)
Friedman, Hastie, Tibshirani (Annals of Statistics, 2000)

1. Let wi ≡ 1/N  for i = 1, 2, …, N

2. Repeat for m = 1, 2, …, M

• Fit a classifier with weights {wi} to get 
pm(x) = Pr(Y*=1|x, {wi})

• Set wi = wi × exp{− 0.5 yi
* × logit pm(xi)}

• Renormalize {wi} such that ∑i wi = 1

3. The final classifier:
ηM(x) = logit p1(x) + logit p2(x) + … + logit pM(x) > c



wi   = wi × exp{− 0.5 yi × logit pm-1(xi)}
= wi × exp{− 0.5 yi × (αm-1+βm-1 xi)}
= exp{− 0.5 yi ∑j=1,…,(m-1) (αj+βj xi)}
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Real AdaBoost with Logistic Regression



ALL CASES ALL CONTROLS

M1

Boosting algorithm

Lower weight Higher weight

M2

Lower weight Higher weight

The first marker

The second marker



Performance of the boosting classifier
(1st stage: Abnormal vs. Normal)

Correct classification

Training dataset Test dataset

Cancer/BPH 245/245 (100%) 44/45 (97.8%)

Normal 81/  81 (100%) 15/15 (100%)



Why does this work?

AdaBoost = “Best off-the-shelf classifier”

(Brieman)
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Boosting = Stage-wise minimization of a loss function L*
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( )( , , )m
m m Xα β

Boosting  = Stage-wise minimization of a loss function L*

given previously selected biomarkers X(m-1)

and their parameters φ(m-1)

Classifier changes slightly at each stage = Slow learning

fixed fixed
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Does this form of the loss function make sense?



Large margin classifiers

Margini ≡ yi η(xi)
> 0 if η(xi) is correct
< 0 if η(xi) is wrong

∝ Higher confidence in classification

∝ Increased generalizability



Large margin classifiers
SVM = min ∑i max(0,1-margini)

AdaBoost = min ∑i e-margini

Logistic =  min ∑i log(1+e-margini)

NN = min ∑i (1-margini)2

Margin
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Discrete AdaBoost Algorithm (y* = 1 vs. y* = −1)

1. Let wi ≡ 1/N  for i = 1, 2, …, N

2. Repeat for m = 1, 2, …, M

• Fit a base classifier fm(xi) ∈ {-1,1} (e.g., a decision tree) with 
weights {wi}

• ERRm = ∑ wi 1{yi ≠ fm (xi)}

• Cm=log{(1-ERRm)/ERRm}

• Set wi = wi × exp{− 0.5 Cm yi
* × fm(xi)}

• Renormalize {wi} such that ∑i wi = 1

3. The final classifier: C1f1(x) + C2f2(x) + … + CMfM(x) > c





It worked well for Cancer/BPH vs. Normal

But …



Performance of the boosting classifier
(2nd stage: Cancer vs. BPH)

Correct classification

Training dataset Test dataset

Cancer 160/167 (95.8%) 28/30 (93.3%)

BPH 70/  78 (89.7%) 7/15 (46.7%)



European Prostate Cancer Detection Study
Protocol: Biopsy 1,051 men with PSA 4-10 ng/ml

If negative, take another biopsy 6 weeks later

If negative again, take another 8 weeks later

119 cancers 
missed by
Biopsy 1!

∴ A single biopsy can miss > 1/3 of cancers in PSA 4-10 patients

Cancer detection: 231 were detected by Biopsy 1

83 were detected by Biopsy 2

36 were detected by Biopsy 3



Cancer label = 100% correct

Non-cancer label < 100% correct

≡ Partially Supervised Learning

How can we “learn” from potentially

partially mislabeled data?
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• If correct labels yi
*s are available:

High (low) weights for incorrectly (correctly) classified observations

weights - log-likelihood

Results of (m-1)th classification ⇒ Who should “speak 
louder” at mth stage



• If correct labels yi
*s are NOT available:

⇒ We cannot determine whether the (m-1)th classification
was correct or not

⇒ Unclear who should speak louder at the mth stage

PROPOSAL

Let the observations that are likely to be misclassified

at (m-1)th stage speak louder at mth stage
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• If correct labels yi
*s are available:
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• If correct labels yi
*s are NOT available:

⇒ EM

Yasui et al. (Biometrics, 2004)



Normal

N=81

Cancer / BPH

N=245

“Normal”

(1)  N=130

Cancer / BPH

(1) N=196
(2)  N=179 (2) N=147

Study (1):  N=49 (>50% of Normal)
Study (2):  N=98 (>100% of Normal)

Test Data
45 Ca/BPH
15 Normal

{yi
*}

{yi}

Design of the 
simulation study



Questions in the simulation study

Q1: Can we recover the cancer/BPH samples         
that were incorrectly labeled as “normal”?

Q2: How do the classifiers constructed from 
the incorrectly labeled training dataset  
perform when tested against the test 
dataset?



Learning methods compared

(1) Forward-selection logistic regression with 
BIC as the model-selection criteria

(2) Real AdaBoost with logistic regression 
(stopped at m=100th iterations)

(3) EM-Boost with P0 = 0.1, 0.3, 0.5 
(stopped at m=100th iterations)



Study (1): Training Dataset Results



Study (1): Test Dataset Results



Study (2): Training Dataset Results



Study (2): Test Dataset Results



Summary
Pre-analysis processing is crucial for a proper analysis

Avoiding overfitting is the key in classifier building with 
multiple biomarkers

In biomedical applications, imperfect class labels are 
common

EM-Boost modifies the boosting algorithm to 
accommodate potential mislabeling: allows “learning”
in partially supervised settings
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